<table>
<thead>
<tr>
<th>Title</th>
<th>De novel synthesis of Tamiflu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Luo, Xiaozhou</td>
</tr>
<tr>
<td>Citation</td>
<td>Luo, X. (2009, March). De novel synthesis of Tamiflu. Presented at Discover URECA @ NTU poster exhibition and competition, Nanyang Technological University, Singapore.</td>
</tr>
<tr>
<td>Date</td>
<td>2009</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10220/8940</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2009 The Author(s).</td>
</tr>
</tbody>
</table>
De Novel Synthesis of Tamiflu

Introduction
With increasing fear of a potential new influenza pandemic, the anti-influenza drug Tamiflu become more and more important. Tamiflu is an antiviral drug which acts as a transition-state analogue inhibitor of influenza neuraminidase, preventing new viruses from emerging from infected cells.

Results and Discussion
The retro-synthetic analysis is shown in Scheme 1. It is an auxiliary assistant 4+2 Diels-Alder cyclization. The sugar auxiliary is introduced to control the stereo selectivity of 3R,4R,5S (Tamiflu).

The X-ray structure of azide-D-galactose is shown below:

Two different methods were tried to do the job as shown in Scheme 5. The possible reason was supposed that there is an intramolecular hydrogen bond which could stabilize the Z configuration.

Conclusion
We are seeking a concise method to synthesis Tamiflu and the key intermediates have already been made. The future work is to study the stereoselectivity of the Diels-Alder reaction by using the sugar auxiliary.

Related Reagent
Pd/C
H2, 40 Psi
r.t., 3h, 90%

r.t., 4h, 95%

80 oC, 12h, 80%

Scheme 5. Synthesis of the sugar 10,Z-form

Route 1

Route 2

10, Z-form